Water Quality Sensor Market - Forecast(2025 - 2031)
Water Quality Sensor Market Overview
The Water Quality Sensor Market size is estimated to reach $2,690.4 Million by 2027, growing at a CAGR of 7.5% during the forecast period 2022-2027, attributed to growing demands for contaminant free water as well as increasing prevalence of water-borne diseases like cholera, typhoid and so on. Government stringency on laws or policies related to industrial waste treatment, rise of aquaculture activities, along with surge in research studies on water quality monitoring processes, have been aiding its market growth. Adoption of water quality sensors help in identification or measurement of concentration levels for chemical oxygen demand, total organic carbon, chlorine, and many more. Additionally, widespread utilization of fluorescence spectroscopic technique to characterize river water pollution as well as significant construction projects related to environment testing labs, can propel the market growth overtime. Government regulations or initiatives for drinking water quality monitoring, testing and surveillance as well as rising water pollution due to rapid industrialization, presence of toxic metal effluents and related hazardous substances are some of the major factors set to transform the Water Quality Sensor industry outlook in the coming time.
Water Quality Sensor Report Coverage
The “Water Quality Sensor Market Report – Forecast (2022-2027)” by IndustryARC, covers an in-depth analysis of the following segments in the Water Quality Sensor Market.
Key Takeaways
- pH water quality sensor market held the largest share in 2021, owing to factors like to rising demand for wastewater treatment within industrial plants and growing need across aquaculture environments.
- Water Quality Sensors for Drinking Water Quality Control application is analyzed to witness the fastest growth during 2022-2027, attributing to government initiatives or guidelines regarding drinking water monitoring or testing, rising prevalence of waterborne diseases and so on.
- APAC dominated the Water Quality Sensor market in 2021, owing to surge in wastewater treatment facilities, growing industrialization and so on.
- Government regulations or initiatives towards drinking water quality monitoring, testing and surveillance alongside rise in water pollution due to rapid industrialization, presence of toxic metal effluents and related hazardous substances is analyzed to significantly drive the market growth of Water Quality Sensor market during the forecast period 2022-2027.
Water Quality Sensor Market Value Share, by Region, 2021 (%)
For More Details on This Report - Request for Sample
Water Quality Sensor Market Segment Analysis- By Type
Based on type, pH sensor segment dominated the Water Quality Sensor market with a share of 33% in 2021, attributed to factors including growing demand for wastewater treatment across industrial plants, rising need within aquaculture environments, and so on. With governmental regulations or stringency on industrial pollution control laws, monitoring industrial wastewater with its treatment have emerged a key factor for industrial plant functioning. Since pH value act as an important indicator for monitoring hydrogen concentration in industrial sewage, domestic sewage, and many other weak alkali environments, there is significant impact on the market growth of pH water quality sensors. Additionally, increasing agricultural activities, expansion projects related to utility sectors, rapid rise in industrial wastage, and so on, have been catering to the need for water quality testing through pH measurement. Moreover, significant number of R&D activities, and growing demand towards water acidity measurement from aquaculture sector, have been also aiding its market growth. In August 2020, ANB Sensors had revealed about its plans on the launch of S series ocean pH sensor, capable of providing calibration-free pH monitoring of the world’s ocean as well as waterways. With variable size availability, these mechanically robust sensors offered wet or dry storage, alongside easy adaptability to fit any type of housing or end use applications, with minimal user intervention. These factors have eventually helped in influencing the market growth of pH Water Quality Sensor industry overtime.
Water Quality Sensor Market Segment Analysis- By Application
Water Quality Sensor for Drinking Water Quality Control applications are analyzed to grow with the highest CAGR of 8.3% during 2022-2027, owing to rising prevalence of waterborne diseases, governmental initiatives or guidelines regarding drinking water monitoring or testing and so on. With massive amounts of industrial wastes or effluents being exposed to the waterbodies, the need for efficient treatment of drinking water becomes highly essential. According to the Brihanmumbai Municipal Corporation’s (BMC) annual Environment Status Report (ESR) 2020-2021, areas namely Dadar, Dharavi, Parel, Byculla, Goregaon as well as Mulund have reported an increase in contamination of drinking water over the last one year. This report highlighted that out of the total 29,051 water samples which were checked by the civic body, 275 (i.e. 0.94 per cent) of the total samples were found contaminated. This showed potential demand for water quality sensors for testing, measurement and surveillance, to eliminate high contamination levels of drinking water, driving adoption of varied spectroscopic techniques. In June 2022, Kerala Water Authority had revealed about launching a special drive under which drinking water quality will be assessed of each schools within the state. For this, water authority’s 86 labs and lab facility of the ground water department will be utilized for chemical as well as microbiological testing of water samples. This initiative was taken in regards with a series of food poisoning cases being reported in schools over the last week. Such factors will help in expanding the Water Quality Sensor market size for drinking water quality control applications in the coming time.
Water Quality Sensor Market Segment Analysis- By Geography
APAC dominated the Water Quality Sensor market with a share of 38% in 2021, and is analyzed to have a significant market growth during the forecast period 2022-2027. Factors including growing industrialization, surge in wastewater treatment facilities, and government policies or initiatives to minimize water pollution hazards have attributed to its market growth. Additionally, stringent government rules on waste and sewage disposal procedures, growing demand for portable or safe drinking water, and increasing establishment of environmental testing laboratories, have been also aiding the demand for water quality sensors in the region. In March 2021, Housing Infrastructure Development Corporation (Hidco), headquartered in Kolkata, India had started installation of smart sensors in nine water tanks within New Town, Kolkata. This will help in generating reports every 24 hours through random checking as well as monitoring of the water quality. These factors are set to transform the APAC Water Quality Sensor industry outlook in the long run.
Water Quality Sensor Market Drivers
Government Regulations or Initiatives towards Drinking Water Quality Monitoring, Testing and Surveillance is Driving the Demand for Water Quality Sensors:
Government regulations or initiatives towards drinking water quality monitoring, testing, and surveillance act as one of the major drivers boosting the market growth of water quality sensor. This growth is attributed to factors like rising industrial wastes disposal in waterbodies, surging cases of drinking water contamination levels, significant industrial pollution hazards and high dependency of rural households on contaminated water sources. In order to address such issues, various government organizations or authorities have started implementing stringent laws, guidelines or regulations for regular monitoring, testing as well as surveillance of drinking water quality, industrial wastewater treatment, utilization of spectroscopic techniques and so on, thus driving the need for water quality sensors. In March 2021, an Indian Government Ministry, named Jal Shakti Ministry had launched guidelines, the framework related to monitoring, testing, and surveillance of drinking water quality. These guidelines specified work to be done in terms of monitoring and surveillance of water quality within the state, block/tehsil, as well as village levels, which have been prepared under consultation from Indian Council of Medical Research. Under this guideline, total dissolved solids, total alkalinity, chloride, turbidity, pH value, chloride, total hardness, iron, total coliform bacteria, e.coil, fluoride, sulphate and nitrate were the prescribed water quality parameters, catering to the market growth of water quality sensors. In November 2021, the Union Minister, Ministry of Jal Shakti, Government of India announced about its establishment of 2000 water testing laboratories already, as a move towards completely transforming the drinking water sector. The government further stated about making water-quality testing infrastructure available to every village for improving services in terms of quantity, quality, and regularity, with targeting about 6000 laboratories by the year 2022. Such factors can be considered vital in propelling the growth of Water Quality Sensor industry in the long run.
Rise in Water Pollution due to Rapid Industrialization, Presence of Toxic Metal Effluents and Related Hazardous Substances is Accelerating the Market Growth of Water Quality Sensors:
Rising water pollution due to rapid industrialization, presence of toxic metal effluents as well as many other hazardous substances can be considered a major driver impacting the growth of Water Quality Sensor market. With rising establishment of varied industrial facilities, there is generation of massive amounts of toxic and hazardous amounts of wastes, which are being dispersed in the nearby waterbodies, without proper chemical treatment. This in turn, creates an adverse impact on the waterbodies including rivers, oceans and so on, causing pollution, hampering the aquatic habitat as well as humans. Regular and controlled monitoring of water bodies through utilization of water quality sensors for measuring content of total organic carbon, chlorine, arsenic and so on, help in minimizing hazards like water-borne diseases, skin diseases and many others. According to the State of Environment Report 2022, from the Centre for Science and Environment (CSE), out of the 33 monitoring stations in Ganga, about 10 had high levels of contaminants. The river being the focus of the Centre’s Namami Gange mission had reported high levels of toxic metals like lead, nickel, iron, arsenic and cadmium. Additionally, the Central Water Commission had tested water samples from 688 stations for heavy metals between August 2018 and December 2020, which showed that pollution, total coliform as well as bio chemical oxygen demand was high in 239 and 88 stations across 21 states. This findings highlighted an indication of poor wastewater treatment from industry, agricultural as well as domestic households. In January 2022, the National Green Tribunal (NGT) had ordered around hundred industrial units in the Tarapur MIDC area, Maharashtra's Palghar district to collectively pay around Rs 186 crore. This was a part of environmental compensation to be paid by the industries, for polluting water bodies in the region through releasing untreated effluents into them. These factors are set to help in expansion of the Water Quality Sensor market size in the coming time.
Water Quality Sensor Market Challenges
High Manufacturing Costs coupled with Integration of Advanced Technologies is Hampering the Market Growth of Water Quality Sensors:
High manufacturing costs coupled with integration of advanced technologies act as one of the major constraints impeding the growth of Water Quality Sensor industry. Due to integration of varied electronic components, as well as the need to balance out parameters like precision, robustness, accuracy and so on, the costs associated with manufacturing tends to become expensive. According to Fondriest Environmental Inc., the average price of water quality sensor ranges between approximately $345 to $12884. With shift towards advanced technologies like IoT in water quality testing and monitoring applications, varied companies have started working on production of such advanced sensors, which requires costly components, skilled labour and time. This in turn, creates an adverse impact on the adoptability of water quality sensors majorly across small scale enterprises, rural households, and so on. Apart from this, incapability of certain water quality sensors to provide higher resolution, less reliability, continuous monitoring and others have been also limiting its adoption overtime.
Water Quality Sensor Industry Outlook
Product launches, acquisitions and R&D activities are key strategies adopted by players in the Water Quality Sensor Market. The top 10 companies in the Water Quality Sensor market are:
- Endress+Hauser
- ANB Sensors
- Yokogawa Electric Corporation
- Hach Company
- Hanna Instruments
- Xylem Inc.
- Libelium
- Schneider Electric
- Hunan Rika Electronic Tech Co., Ltd (Rika Sensor)
- Honeywell Inc.
Recent Developments
- In February 2021, Yokogawa Electric Corporation announced about the launch of TB820D right angle scattered light turbidity detector, FC800D non-reagent type free available chlorine sensor unit, RC800D reagent type residual chlorine sensor unit, FLXA402T liquid analyzer for turbidity and chlorine, as well as PG400 pulse generator for clean unit, as an addition to its OpreX Analyzers lineup for water treatment facilities. These was meant to extend its availability in Southeast Asia, the Middle East, South Korea, Australia, and Taiwan, ensuring high-quality drinking water.
- In November 2019, Hach launched a colorimetric chlorine analyzer, CLI7sc which was designed to help water professionals manage disinfection processes effectively. This also helped in accurate data collection to meet compliance reporting regulations.
- In June 2019, Endress+Hauser launched the Memosens CCS51D amperometric sensors for free chlorine measurement in process water, drinking water, water and wastewater treatment, cooling water as well as all utilities and processes requiring clean treated water. With a special membrane design, these sensors provided an extremely fast response time, intended to help plant operators run disinfection processes on tight limits and save chemicals.
Relevant Report Titles:
Report Code: AIR 0341
Report Code: ESR 0177
Report Code: ATR 0044
For more Electronics Market reports, please click here